
Combining Functional and Automata Synthesis to Discover
Causal Reactive Programs

Ria A. Das1, Joshua B. Tenenbaum2, Armando Solar-Lezama2, Zenna Tavares3

1Stanford University, 2MIT, 3Basis and Columbia University

Motivation

Objective: To inductively synthesize functional reactive pro-
grams, i.e. from a finite data sequence.
Why does it matter? Reactive settings are plentiful in
the real world (e.g. a robot or self-driving car operating on
the street and updating its time-varying environment model,
or a child learning how a video game works via observation),
but existing techniques do not learn these programs from data.
Standard reactive synthesis inputs a logical formula and outputs
an automaton. Programs are often more useful representations
than automata, because large numbers of automaton states can
be abstractly expressed in compact programs.
Why is it hard? While programs are more useful, stan-
dard methods for functional program synthesis cannot synthe-
size time-varying latent state, the core element of reactive
settings. Precisely, functional synthesis expects its inputs and
outputs to be fully observed, but both the inputs and outputs
are partially observed in a reactive setting. Further, beyond
just learning the values of the unobserved state at static times,
reactive synthesis requires learning how the unobserved state
dynamically evolves over time, in the form of program rules.

Approach

Our Solution: How can we inductively synthesize programs
with time-varying latent state? Our approach is to integrate
functional and automata synthesis. Our algorithm first
tries to synthesize the program using functional synthesis. If
this fails, inductive automata synthesis generates new latent
state that then enables functional synthesis to succeed.
Methodology: We instantiate our algorithm in the domain of
time-varying, Atari-like grid worlds, and write programs using
a language called Autumn. An Autumn program defines ob-
ject and latent (integer) variables, and describes grid-world dy-
namics using statements of the form on event update, where
update changes a variable’s value. Given a sequence of ob-
served frames and user actions, we seek the Autumn program
that generates the observations. Concisely, we want to learn
initial variable values and on-clauses.
Running Example: In the Mario program (center column),
the agent (red) moves around with arrow keys and collects coins
(gold). If the agent has collected a positive number of coins, on
a click, a bullet (black) is released, and the agent’s coin count
is decremented. The number of collected coins is not displayed
anywhere on the grid at any time, so the only way to write an
Autumn program for Mario is to define a latent or invisible
variable that tracks the number of coins.

Evaluation

We evaluate our algorithm, named AutumnSynth, on a
manually-constructed corpus of 30 Autumn programs that we
call the Causal Inductive Synthesis Corpus (CISC), as well as
a third-party suite of 27 grid-world-style video games called
EMPA. For each benchmark, we manually constructed an in-
put sequence of observed grid frames and user actions. In our
preliminary results, we find that we can synthesize 27 of 30
CISC programs and 21 of 27 EMPA programs, where success
indicates the synthesized program matches the given observa-
tions; see paper for details.

The AutumnSynth Algorithm: An Overview AutumnSynth Algorithm: Automata Learning

Figure 1: No event matches the addObj update function’s times, but the “closest” match is the clicked event,
which co-occurs with addObj but also occurs on false positive times. We coerce clicked into being a matching
event by and-ing it with a predicate involving a new integer latent variable. This variable must take one set
of values during the false positive times (indicated by red star), and another set during the true positive times
(indicated by green star). Then, the event in the third row matches addObj’s times. To define this variable, we
must find transition events that are true within the intervals between true and false times (false-to-true intervals
are black, and true-to-false are gray). These transition events are clicked and intersects, corresponding to
the edges in the automaton diagram in the previous column.

Example Benchmark Programs

Figure 2:Top: Some CISC programs. Bottom: Some EMPA programs. Clockwise from top-left: Water interacting
with a sink, Space Invaders, plants growing, snow blowing in the wind, MSFT Paint, gates that close and block
path to goal, oscillating aliens, and portals that transport an agent to different-colored squares.

Example Synthesized Automata

Water Plug: Clicking on an empty square adds a colored square. The square color depends
on the last of the three leftmost buttons clicked.


